
technically correct
LaCTF 2024 writeup

MadrHacks
Roberto Van Eeden

@rw-r-r-0644

CyberCup keynote speechJuly 6, 2024

MadrHacks
We are a team of ethical hackers born during CyberChallenge.IT 2020 at theUniversity of Udine

Come visit us at snakeCTF 2024!

Let’s have a look at one of the challenges!
technically correct
LaCTF 2024 // rev // @aplet123 // t.ly/WqLOC

All we are given is a binary that verifies if a given flag is correct

▶ we can execute the binary normally
▶ the ELF binary is good enough for the linux kernel

▶ ...but nearly nothing else, apparently :(
▶ RIP readelf, gdb, Ghidra, etc.

▶ we can execute the binary normally
▶ the ELF binary is good enough for the linux kernel
▶ ...but nearly nothing else, apparently :(
▶ RIP readelf, gdb, Ghidra, etc.

Option 1
▶ carefully analyze ELF header, attempt manual repair
▶ annoying

Option 2

▶ slap some printk()within linux/fs/binfmt elf.c

▶ build new ELF binaryfrom captured load addresses / offsets
▶ profit?

Option 1
▶ carefully analyze ELF header, attempt manual repair
▶ annoying

Option 2

▶ slap some printk()within linux/fs/binfmt elf.c

▶ build new ELF binaryfrom captured load addresses / offsets
▶ profit?

▶ seems to work!
▶ resulting binary still looks somewhat odd, maps 60 page-sized sections(0x1000 bytes) to seemingly arbitrary and discontiguous places
▶ (turns out this is intended!)

Analyzing the resulting binary

We can now throw the binary in gdb, Ghidra, ...
▶ usual anti-debugging techniques
▶ most annoyingly, self-modifying code sections become available only rightbefore being executed

▶ fortunately, dynamic analysis techniques bypass most of these problems :)

Analyzing the resulting binary

We can now throw the binary in gdb, Ghidra, ...
▶ usual anti-debugging techniques
▶ most annoyingly, self-modifying code sections become available only rightbefore being executed
▶ fortunately, dynamic analysis techniques bypass most of these problems :)

Qiling Framework

▶ based on Unicorn cpu emulator (itself based on QEMU)
▶ high level syscall emulation for multiple targets
▶ API provides numerous hooks to analyze and/or modify what the binary isdoing:

▶ executed instructions, blocks
▶ memory reads/writes
▶ syscalls
▶ ...and much more!

Reverse engineering
It appears ELF sections contain static data used to compute a custom hash.

1 const uint64 t H0 = 0xf84bc1f88e8 ;2 u int64 t h update (u int64 t state , unsigned char data) {3 uint64 t p = state + data *8;4 state = read64 (p) ˆ p ;5 state *= 0xb216cb3c48c1e693 ;6 state += 0xc200c6d3267c529d ;7 return state ;8 }

▶ hash state is a 64 bit value
▶ non-injective transforms for state updates
▶ hash state is a pointer to an address within one of previously

mentioned data sections (arry with next hash base for each input
byte)

Inverting the hash

▶ hash state is a pointer to an address within one of previously
mentioned data sections (arry with next hash base for each input
byte)

▶ state space is relatively contained, only 30720 possible states (60 pages ofsize 0x1000 containing 64 bit values)
▶ build hash update inverse map, work backwards from correct hash untilwe reach H0 keeping tracks of the set of possible states that could reachtarget checksum
▶ bitsets are great

Thanks for your attention
Questions? Comments?

	Text Examples
	Paragraphs and Lists
	Analysis

