MadrHacks

Roberto Van Eeden
@rw-r-r-0644

CyberCup keynote speech
July 6, 2024



MadrHacks

University of Udine

We are a team of ethical hackers born during CyberChallenge.IT 2020 at the

Come visit us at snakeCTF 2024!

4> 4T «E>»

=



Let's have a look at one of the challenges!
technically_correct

LaCTF 2024 // rev // @aplet123 // t.ly/WqLOC

v
i)

»
"

A
E BEST KIND OF CORRECT

win
le
|
alEir

All we are given is a binary that verifies if a given flag is correct

4> 4T «E>»

=



we can execute the binary normally
the ELF binary is good enough for the linux kernel



we can execute the binary normally
the ELF binary is good enough for the linux kernel

...but nearly nothing else, apparently :(
RIP readelf, gdb, Ghidra, etc.



$ readelf -a ./technically_correct

ELF Headerx:
Magic: 7f 45 4c 46 01 02 a8 9e b6 21 74 80 ©6 55 b8 eb
Class: ELF32
DERE 2's complement, big endian
Version: 168 <unknown>
0S/ABI: <unknown: 9e>
ABI Version: 182
Type: <unknown>: 200
Machine: <unknown>: 0x3e00
Version: Ox6ed7bac?
Entry point address: 0x37c¢184d0
Start of program headers: 3338993664 (bytes into file)
Start of section headers: 973078528 (bytes into file)
Flags: 0x0
Size of this header: 36406 (bytes)
Size of program headers: 8300 (bytes)
Number of program headers: 15801
Size of section headers: 35328 (bytes)
Number of section headers: 56772

Section header string table index: 5298
readelf: Warning: The e_shentsize field in the ELF header is larger than the size of an ELF section header
readelf: Error: Reading 2005641216 bytes extends past end of file for section headers
readelf: Error: Section headers are not available!
readelf: Error: Too many program headers - 0x3db9 - the file is not that big

There is no dynamic section in this file.
readelf: Error: Too many program headers - 0x3db9 - the file is not that big

$

A > AT «E>» <= =




Option 1
carefully analyze ELF header, attempt manual repair
annoying



Option 1

» carefully analyze ELF header, attempt manual repair
» annoying

Option 2

» slap some printk ()

within 1inux/fs/binfmt elf.c
» build new ELF binary

from captured load addresses / offsets
> profit?

4> 4T «E>»

=



cLr
ELF
ELF
=L
ELF
ELF
ELF
=L
ELF
ELF
ELF

LUALY AUUR.UALUTOLLOTFUOUY Urro.UADIOUUOY LCN.UALOOUO

LOAD ADDR:0xD3A94076000 OFFS:0x24000 LEN:0x1000
LOAD ADDR:0xD8OA6BEFO00O OFFS:0x14000 LEN:0x1000
LOAD ADDR:@xDC7D1B35000 OFFS:0x15000 LEN:0x1000
LOAD ADDR:0xDCE3460C000 OFFS:0x2D0OG0 LEN:0x1000
LOAD ADDR:0xE58854D6000 OFFS:0x1EGQ00 LEN:0x1000
LOAD ADDR:0xESFFS5ADCO0O0O OFFS:0x31000 LEN:0x1000
LOAD ADDR:OxE885987B0O00 OFFS:0x30000 LEN:0x1000
LOAD ADDR:0xF2FA2AEEQGQ0 OFFS:0x7000 LEN:0x1000
LOAD ADDR:0xF84BC1F8000 OFFS:0x36000 LEN:0x1000
LOAD ADDR:0xF8CAFBBOOOO OFFS:0x1FOO0 LEN:0x1000

seems to work!

resulting binary still looks somewhat odd, maps 60 page-sized sections
(0x1000 bytes) to seemingly arbitrary and discontiguous places

(turns out this is intended!)



We can now throw the binary in gdb, Ghidra, ...
usual anti-debugging techniques

most annoyingly, self-modifying code sections become available only right
before being executed



We can now throw the binary in gdb, Ghidra, ...
usual anti-debugging techniques

most annoyingly, self-modifying code sections become available only right
before being executed

fortunately, dynamic analysis techniques bypass most of these problems :)



[n] By cH[u]

based on Unicorn cpu emulator (itself based on QEMU)
high level syscall emulation for multiple targets

API provides numerous hooks to analyze and/or modify what the binary is
doing:

executed instructions, blocks

memory reads/writes

syscalls

...and much more!



It appears ELF sections contain static data used to compute a custom hash.

1 const uint64_t HO = O0xf84bc1f88e8;

2 uint64_t h_update(uint64_t state, unsigned char data) {
uinté4_t p = state + data*8;

state = read64(p) " p;

state *= 0Oxb216cb3c48c1e693;

state += 0xc200c6d3267c529d;

return state;

oc0oNNOoOYUl AW

hash state is a 64 bit value
non-injective transforms for state updates

hash state is a pointer to an address within one of previously
mentioned data sections (arry with next hash base for each input
byte)



hash state is a pointer to an address within one of previously
mentioned data sections (arry with next hash base for each input
byte)

state space is relatively contained, only 30720 possible states (60 pages of
size 0x1000 containing 64 bit values)

build hash update inverse map, work backwards from correct hash until
we reach HO keeping tracks of the set of possible states that could reach
target checksum

bitsets are great



roundO round1 round2 round3

| /‘\‘/‘




HO

roundO round1 round2 round3

T

hash




Thanks for your attention

Questions? Comments?



	Text Examples
	Paragraphs and Lists
	Analysis


